Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available November 1, 2025
-
Summary Covariate adjustment can improve precision in analysing randomized experiments. With fully observed data, regression adjustment and propensity score weighting are asymptotically equivalent in improving efficiency over unadjusted analysis. When some outcomes are missing, we consider combining these two adjustment methods with the inverse probability of observation weighting for handling missing outcomes, and show that the equivalence between the two methods breaks down. Regression adjustment no longer ensures efficiency gain over unadjusted analysis unless the true outcome model is linear in covariates or the outcomes are missing completely at random. Propensity score weighting, in contrast, still guarantees efficiency over unadjusted analysis, and including more covariates in adjustment never harms asymptotic efficiency. Moreover, we establish the value of using partially observed covariates to secure additional efficiency by the missingness indicator method, which imputes all missing covariates by zero and uses the union of the completed covariates and corresponding missingness indicators as the new, fully observed covariates. Based on these findings, we recommend using regression adjustment in combination with the missingness indicator method if the linear outcome model or missing-completely-at-random assumption is plausible and using propensity score weighting with the missingness indicator method otherwise.more » « less
-
Abstract Microglia are important players in surveillance and repair of the brain. Implanting an electrode into the cortex activates microglia, produces an inflammatory cascade, triggers the foreign body response, and opens the blood-brain barrier. These changes can impede intracortical brain-computer interfaces performance. Using two-photon imaging of implanted microelectrodes, we test the hypothesis that low-intensity pulsed ultrasound stimulation can reduce microglia-mediated neuroinflammation following the implantation of microelectrodes. In the first week of treatment, we found that low-intensity pulsed ultrasound stimulation increased microglia migration speed by 128%, enhanced microglia expansion area by 109%, and a reduction in microglial activation by 17%, indicating improved tissue healing and surveillance. Microglial coverage of the microelectrode was reduced by 50% and astrocytic scarring by 36% resulting in an increase in recording performance at chronic time. The data indicate that low-intensity pulsed ultrasound stimulation helps reduce the foreign body response around chronic intracortical microelectrodes.more » « less
-
This paper provides a critical review of the Bayesian perspective of causal inference based on the potential outcomes framework. We review the causal estimands, assignment mechanism, the general structure of Bayesian inference of causal effects and sensitivity analysis. We highlight issues that are unique to Bayesian causal inference, including the role of the propensity score, the definition of identifiability, the choice of priors in both low- and high-dimensional regimes. We point out the central role of covariate overlap and more generally the design stage in Bayesian causal inference. We extend the discussion to two complex assignment mechanisms: instrumental variable and time-varying treatments. We identify the strengths and weaknesses of the Bayesian approach to causal inference. Throughout, we illustrate the key concepts via examples. This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.more » « less
-
Abstract Many causal processes have spatial and temporal dimensions. Yet the classic causal inference framework is not directly applicable when the treatment and outcome variables are generated by spatio-temporal point processes. We extend the potential outcomes framework to these settings by formulating the treatment point process as a stochastic intervention. Our causal estimands include the expected number of outcome events in a specified area under a particular stochastic treatment assignment strategy. Our methodology allows for arbitrary patterns of spatial spillover and temporal carryover effects. Using martingale theory, we show that the proposed estimator is consistent and asymptotically normal as the number of time periods increases. We propose a sensitivity analysis for the possible existence of unmeasured confounders, and extend it to the Hájek estimator. Simulation studies are conducted to examine the estimators' finite sample performance. Finally, we illustrate the proposed methods by estimating the effects of American airstrikes on insurgent violence in Iraq from February 2007 to July 2008. Our analysis suggests that increasing the average number of daily airstrikes for up to 1 month may result in more insurgent attacks. We also find some evidence that airstrikes can displace attacks from Baghdad to new locations up to 400 km away.more » « less
An official website of the United States government
